Golden Craps Shooter
After having dinner with my wife....I had $100 on me, gave my wife $20 to play the slots, had $80 left...decided to play a few minutes of craps.....the only spot available was on a $15 Craps table. Stood next to this guy who leans over to me and says, 'Get ready to make a lot of $$$$'. He buys in for $1,000; Bets $200 Pass Line, $600 Odds, $200 Hardway on the Point. He makes 10 total points, 8 of them Hardways. Almost every number he threw was a Hardway, it was the most unbelievable Dice throwing I have ever seen in my entire life and everybody on the table all said he was the greatest shooter they had ever seen.
Shooting involves pushing a big red button. In a real game, a shooter keeps the dice until they “seven out.” But in Shoot to Win Craps, the game decide who shoots, and when. During one of our sessions, a shooter was on a tear, and the game decided someone else was going to shoot. Seasoned players won’t like that too much. This is the book craps players have been waiting for! For the first time ever, the casino's worst nightmare, the amazing player known as Sharpshooter, reveals his secrets for getting the edge at craps―how to control the dice when you shoot in order to reduce the appearance of certain numbers (the 7!) and increase the appearance of other numbers.
I turned $80 to $1,300 (Betting conservatively).New Video Poker Course at Golden Touch Craps 00:04:11 Practice Your Dice Control Grip 00:02:15 The Hardway vs V Sets 00:08:09 An Introduction to Golden Touch Craps and the Dominator 00:06:53 The Dominator in London 00:12:51 Atlantic City Seminar Promo 00:01:40 Speed Count 00:01:55 What Dice to Practice With.
The shooter turned $1,000 to over $20,000...Just came back from a trip where I played next to the Greatest Craps Shooter Ever! I have been playing Craps for over a decade and this one takes the cake.
After having dinner with my wife....I had $100 on me, gave my wife $20 to play the slots, had $80 left...decided to play a few minutes of craps.....the only spot available was on a $15 Craps table. Stood next to this guy who leans over to me and says, 'Get ready to make a lot of $$$$'. He buys in for $1,000; Bets $200 Pass Line, $600 Odds, $200 Hardway on the Point. He makes 10 total points, 8 of them Hardways. Almost every number he threw was a Hardway, it was the most unbelievable Dice throwing I have ever seen in my entire life and everybody on the table all said he was the greatest shooter they had ever seen.
I turned $80 to $1,300 (Betting conservatively).
The shooter turned $1,000 to over $20,000...
Don't we all want to be that guy!? Sort of like Babe Ruth pointing to the section of the stands he is going to hit the home run to. Then doing it.
If so, what camp?
Or, just another random rolling SOB?
Just know that he was not overly impressed with his $19,000 profit.
The Craps players had perfect Craps etiquette, no late bets, not a single COME Bet in his Landing Zone. No Horn Bets during the 'ON' cycle even when he threw 5 Horns in a row (I was amazed and impressed nobody bet on the Horn even though the Pit Boss was clamoring for people to bet the Horn). No one wanted to throw a chip in when he had the Dice to throw off his rhythm.
where should I head though?
The funny thing is he had the Pit Bosses sweating his very move because he wanted everyone to know he was going to hurt them in the pockets. I only wish I had my usual $500 bankroll on me; I would have been more aggressive and made a lot more money.
You owe us the Casino ID after this nugget my man... ;-)
You owe us the Casino ID after this nugget my man... ;-)
Not sure if you noticed but in my recent posts, I stopped identifying the Casinos that I play at...for a good reason. Craps is amazing...If you keep an open mind and pay attention to what's going on at the tables....there's a lot of money to be made.
Sadly, this most recent trip was not at a Casino in the United States and the guy was playing while on vacation with his family. He only played Craps on one night. I ran into him later the next day and literally pleaded with him to come back to the tables but he never did. Everybody at the Craps tables spent the rest of the weekend talking about this shooter; we were very upset that he only played one night. I came back every day/night with a $1,000 bankroll with all my debit cards on standby....praying he would show up....I was ready to bet minimum $100 on every Hardway but he never showed up to the tables again.
The Pit Boss had treatened to ban him for being 'too lucky' the night before so I don't know if that's why he didn't come back to the Craps tables....nobody knows what happened to him.
Not sure if you noticed but in my recent posts, I stopped identifying the Casinos that I play at...for a good reason. Craps is amazing...If you keep an open mind and pay attention to what's going on at the tables....there's a lot of money to be made.
Sadly, this most recent trip was not at a Casino in the United States and the guy was playing while on vacation with his family. He only played Craps on one night. I ran into him later the next day and literally pleaded with him to come back to the tables but he never did.
Okay, I will guess Cruise ship with a shorter table! Very cool in any event. Love the fact the bosses knew what they had on their hands.
Golden Craps Shooter Free
In any event... I fully concur with your sentiments. To wit, keeping an Open Mind and, of course, Paying Attention. Kudos.
As I have been taught too many times..play on cruiseships/casino boats simply for fun. Most 'lucky' players don't want to be in a situation where they can't disappear in a New York minute.
Disclaimer
One of the most hotly debated topics among advantage gamblers is whether or not it is possible to influence the throw of the dice in craps. Personally, I'm still skeptical. I don't rule out the possibility, but I'm not convinced. Most casinos happily allow it. If I ran a casino, I would allow it too, because I think the number of people who can influence the dice (if any) is far outweighed by the number who think they can, but can't. Still some people I respect do believe in it, mainly Stanford Wong, who trained under Golden Touch Craps. My craps appendix 3 outlines evidence I have gathered. That said, everything else in this page is from the hypothetical perspective that the dice can be influenced. The purpose of this page is to quantify the player advantage, according to his skill level, and recommend the best dice settings.
How Dice Control Allegedly Works
Even the strongest believers in dice control will admit that most throws, even of the best shooters, are still random. However, it takes a small percentage only of precise throws to overcome the house edge. What is happening on these successful throws? There are two schools of thought, or types of shooters. Both types of shooters set the dice in a certain way, hoping to keep them on axis, and together in rotation, as if the dice were glued together. Two things can go wrong after the dice leave the shooter's hands, and that is what divides the two types of shooters.
The first type of shooter is what I'll call the 'correlation shooter.' The correlation shooter does no better than a random shooter at keeping the dice on axis. However, when the dice do stay on axis, the rotations of the two dice are correlated. For a random shooter, if the dice did stay on axis, there would be a 25% chance of their landing with the same faces together, as when the dice were in the shooter's hand. The correlation shooter hopes to increase this probability above 25%, by reducing the probability of the dreaded double-pitch throw. A double-pitch is when both dice stay on axis, but one die rotates 180 degrees more than the other. Likewise, a single-pitch is when both dice stay on axis, but one die rotates 90 degrees more or less than the other. Based on a careful reading of Wong on Dice, for purposes of this page, I assume the correlation shooter shoots randomly, except the probability of zero-pitch throws is a certain percentage higher than expectations, at the cost of an equal reduction in double-pitches. Wong never states this is exactly what happens with correlation shooters; it is my own simplified interpretation. To get specific results from my analysis, I had to put in some specific assumptions.
The second type of shooter is what I'll call the 'axis shooter.' Not only can the axis shooter keep the dice correlated when they do stay on axis, but he can keep them on axis more than the expected 44.44% of the time of a random shooter.
Stanford Wong writes in 'Wong on Dice' that most careful shooters he observed were not keeping both dice on axis more than the random expectations, but were achieving influence through correlation. Based on my faith in Wong, the following tables are all under the assumption of correlation shooting only.
Dice Settings
There are 84 distinct ways to set the dice. In my analysis for this page, I examined all 84 sets, and noted the best set for each bet. The following sets are the only ones that came up as the best for the bets studied. For practical purposes, the only sets you need to know are Hard Ways set #1 and Sevens set #1. The other sets are either equally as good in some situations, or optimal for bets you shouldn’t be making, because better bets are available.
Dice Settings
Hard Ways Set #1: This is the king of the dice sets. It is the best, or tied for best, for rolling any point before a 7. |
Hard Ways Set #2: This set is equally as good as the Hard Ways set #1 for rolling points of 4, 5, 9, and 10. It is also the best set on a come out roll for the don't pass bet. |
Hard Ways Set #3: This set is equally as good as the Hard Ways set #1 for rolling points of 5, 6, 8, and 9. |
Sevens Set #1: In my opinion, this set is the best for rolling sevens. It is the best set on the come out roll for pass line bets. It also tied for best for rolling a seven after a don't pass bet on points of 4, 5, 9, and 10. |
Sevens Set #2: This set is the best, or tied for best, for rolling a seven after a don't pass bet on all points. |
Sevens Set #3: This set is the best, or tied for best, for rolling sevens after making a don't pass bet on points of 5, 6, 8, and 9. |
Skill Factor
The skill factor is defined as the percentage of double-pitch throws that the skillful shooter turns into zero-pitch throws. A skill factor of zero would apply to a random shooter, where the probability of both a zero-pitch and double-pitch throw are each (2/3) × (2/3) × (1/4) = 1/9 = 11.11%. A skill factor of 12%, for example, would move 12% of double-pitches into zero-pitches. In this case, the probability of a double-pitch would be 11.11% × 88% = 9.78%, and for a zero-pitch would be 11.11% × 112% = 12.44%. All other outcomes would be the same as that of a random shooter.
Rolls to Sevens Ratio
Most of the time the shooter is going to want to avoid sevens. By far, the most common metric for measuring dice control is the 'Sevens:Rolls Ratio,' or RSR. As defined in 'Wong on Dice,' the RSR is the ratio of rolls to sevens. I believe that acronym is a misnomer, because the rolls to sevens ratio should be abbreviated RSR. So, I am going to break with convention and call it that. For a random shooter, the probability of a seven is 1/6, so the RSR would be 6. A skillful shooter should be able to throw fewer sevens, and thus increase the RSR above 6. As a basis of comparison to other sources, I will include the RSR in my house edge tables. The RSR's mentioned in 'Wong on Dice' are usually in the range of 6.3 to 7.0.
Pass Line with 3-4-5X Odds
The following table shows the player advantage on the pass line bet, with 3-4-5X odds, according to skill factor. I measured the house edge two different ways. The column for the house edge with the Hard Way set (HW#1), is the house edge if the shooter always uses the Hard Way set #1, even on a come out roll. The column for the house edge with the Hard Way and Seven sets (HW#1 & 7#1) applies when the shooter uses the Seven set #1 on a come out roll, and the Hard Way set #1 otherwise. The reason for listing the house edge for the Hard Way set alone is that many shooters also make come bets, which would lose on a seven on a come out roll. I've observed some so-called skillful shooters using the Hard Way set on a come out roll, even with no come bets. I believe the reason for this is ease in record keeping.
Pass with 3-4-5X Odds
Skill Factor | RSR | Player Adv. — HW#1 Set | Player Adv. — HW#1 & 7#1 Sets |
---|---|---|---|
0.00 | 6.000 | -0.374% | -0.374% |
0.01 | 6.040 | 0.018% | 0.102% |
0.02 | 6.081 | 0.414% | 0.581% |
0.03 | 6.122 | 0.814% | 1.062% |
0.04 | 6.164 | 1.217% | 1.546% |
0.05 | 6.207 | 1.623% | 2.032% |
0.06 | 6.250 | 2.033% | 2.521% |
0.07 | 6.294 | 2.447% | 3.012% |
0.08 | 6.338 | 2.864% | 3.506% |
0.09 | 6.383 | 3.284% | 4.003% |
0.10 | 6.429 | 3.709% | 4.502% |
0.11 | 6.475 | 4.137% | 5.004% |
0.12 | 6.522 | 4.568% | 5.509% |
0.13 | 6.569 | 5.004% | 6.016% |
0.14 | 6.618 | 5.443% | 6.527% |
0.15 | 6.667 | 5.886% | 7.04% |
0.16 | 6.716 | 6.333% | 7.556% |
0.17 | 6.767 | 6.784% | 8.074% |
0.18 | 6.818 | 7.238% | 8.596% |
0.19 | 6.870 | 7.697% | 9.121% |
0.20 | 6.923 | 8.160% | 9.648% |
0.21 | 6.977 | 8.626% | 10.179% |
0.22 | 7.031 | 9.097% | 10.712% |
0.23 | 7.087 | 9.572% | 11.249% |
0.24 | 7.143 | 10.051% | 11.788% |
0.25 | 7.200 | 10.534% | 12.331% |
Don't Pass Line with Laying 3-4-5X Odds
The following table shows the player advantage on the don't pass line bet, with 3-4-5X odds, according to skill factor. As with the pass bet, I measured the house edge two different ways. The first applies if the shooter uses the Seven set #2 on every throw. The second applies if the shooter uses the Hard Way set #2 on the come out roll, and the Seven set #2 on all other throws. Comparing this table to the above table, the player advantage on the pass bet is greater with a skill factor of 0.01 or greater. So, this table is not of much practical value.
Don't Pass, Laying 3-4-5X Odds
Skill Factor | RSR | Player Adv. — 7#2 Set | Player Adv. — 7#2 & HW#2 Sets |
---|---|---|---|
0.00 | 6.000 | -0.274% | -0.274% |
0.01 | 6.040 | 0.021% | 0.080% |
0.02 | 6.081 | 0.314% | 0.433% |
0.03 | 6.122 | 0.604% | 0.784% |
0.04 | 6.164 | 0.892% | 1.133% |
0.05 | 6.207 | 1.177% | 1.480% |
0.06 | 6.250 | 1.460% | 1.825% |
0.07 | 6.294 | 1.741% | 2.168% |
0.08 | 6.338 | 2.02% | 2.509% |
0.09 | 6.383 | 2.296% | 2.849% |
0.10 | 6.429 | 2.570% | 3.186% |
0.11 | 6.475 | 2.841% | 3.522% |
0.12 | 6.522 | 3.111% | 3.856% |
0.13 | 6.569 | 3.378% | 4.189% |
0.14 | 6.618 | 3.643% | 4.519% |
0.15 | 6.667 | 3.906% | 4.848% |
0.16 | 6.716 | 4.166% | 5.175% |
0.17 | 6.767 | 4.425% | 5.501% |
0.18 | 6.818 | 4.681% | 5.824% |
0.19 | 6.870 | 4.935% | 6.146% |
0.20 | 6.923 | 5.187% | 6.467% |
0.21 | 6.977 | 5.437% | 6.786% |
0.22 | 7.031 | 5.685% | 7.103% |
0.23 | 7.087 | 5.931% | 7.418% |
0.24 | 7.143 | 6.175% | 7.732% |
0.25 | 7.200 | 6.417% | 8.045% |
Golden Craps Shooter Game
Place and Buy Bets
The next table shows the house edge for placing the 5, 6, 8, and 9, and buying the 4 and 10. When buying the 4 and 10, it is under the rule of paying the commission always. As the table shows, the greatest advantages are on the 6 and 8. If the shooter always used the Hard Way set #1 on the pass line, and had a skill factor of 0.17 or greater, then his advantage would be greater placing the 6 and 8 than the pass line bet with 3-4-5X odds.
Place and Buy Bets
Skill Factor | RSR | Buy 4,10 | Place 5,9 | Place 6,8 |
---|---|---|---|---|
0.00 | 6.000 | -2.439% | -4.000% | -1.515% |
0.01 | 6.040 | -2.115% | -3.614% | -1.048% |
0.02 | 6.081 | -1.793% | -3.226% | -0.579% |
0.03 | 6.122 | -1.473% | -2.834% | -0.107% |
0.04 | 6.164 | -1.155% | -2.439% | 0.368% |
0.05 | 6.207 | -0.840% | -2.041% | 0.845% |
0.06 | 6.25 | -0.526% | -1.639% | 1.325% |
0.07 | 6.294 | -0.215% | -1.235% | 1.807% |
0.08 | 6.338 | 0.095% | -0.826% | 2.292% |
0.09 | 6.383 | 0.403% | -0.415% | 2.780% |
0.10 | 6.429 | 0.708% | 0.000% | 3.271% |
0.11 | 6.475 | 1.012% | 0.418% | 3.764% |
0.12 | 6.522 | 1.313% | 0.84% | 4.261% |
0.13 | 6.569 | 1.613% | 1.266% | 4.76% |
0.14 | 6.618 | 1.911% | 1.695% | 5.261% |
0.15 | 6.667 | 2.207% | 2.128% | 5.766% |
0.16 | 6.716 | 2.501% | 2.564% | 6.274% |
0.17 | 6.767 | 2.793% | 3.004% | 6.784% |
0.18 | 6.818 | 3.083% | 3.448% | 7.298% |
0.19 | 6.870 | 3.372% | 3.896% | 7.814% |
0.20 | 6.923 | 3.659% | 4.348% | 8.333% |
0.21 | 6.977 | 3.943% | 4.803% | 8.856% |
0.22 | 7.031 | 4.227% | 5.263% | 9.381% |
0.23 | 7.087 | 4.508% | 5.727% | 9.909% |
0.24 | 7.143 | 4.788% | 6.195% | 10.441% |
0.25 | 7.200 | 5.066% | 6.667% | 10.976% |
Hop Bets
When I set out on this analysis I thought I would find that the advantage on hop bets was more than on the pass with odds. However, for the most part, it isn't. The only exception would be if your skill factor is at least 12%, and you are throwing at a table in the United Kingdom or Australia, where they pay 16 to 1 on easy hops, and 33 to 1 on hard hops.
Under the UK/Australian rules, my advice on setting for the hop bets is to set anything, and then make hop bets on each of the different combinations showing on the adjacent faces. For example, with Hard Ways set #1, bet on 2-2, 3-3, 4-4, and 5-5. With Sevens Set #1 bet on 1-6 and 2-5.
Hop Bets
Skill Factor | RSR | Easy Hop 15 to 1 | Easy Hop 16 to 1 | Hard Hop 30 to 1 | Hard Hop 31 to 1 | Hard Hop 32 to 1 | Hard Hop 33 to 1 |
---|---|---|---|---|---|---|---|
0.00 | 6.00 | -11.111% | -5.556% | -13.889% | -11.111% | -8.333% | -5.556% |
0.01 | 6.04 | -10.222% | -4.611% | -13.028% | -10.222% | -7.417% | -4.611% |
0.02 | 6.08 | -9.333% | -3.667% | -12.167% | -9.333% | -6.500% | -3.667% |
0.03 | 6.12 | -8.444% | -2.722% | -11.306% | -8.444% | -5.583% | -2.722% |
0.04 | 6.16 | -7.556% | -1.778% | -10.444% | -7.556% | -4.667% | -1.778% |
0.05 | 6.21 | -6.667% | -0.833% | -9.583% | -6.667% | -3.750% | -0.833% |
0.06 | 6.25 | -5.778% | 0.111% | -8.722% | -5.778% | -2.833% | 0.111% |
0.07 | 6.29 | -4.889% | 1.056% | -7.861% | -4.889% | -1.917% | 1.056% |
0.08 | 6.34 | -4.000% | 2.000% | -7.000% | -4.000% | -1.000% | 2.000% |
0.09 | 6.38 | -3.111% | 2.944% | -6.139% | -3.111% | -0.083% | 2.944% |
0.10 | 6.43 | -2.222% | 3.889% | -5.278% | -2.222% | 0.833% | 3.889% |
0.11 | 6.47 | -1.333% | 4.833% | -4.417% | -1.333% | 1.75% | 4.833% |
0.12 | 6.52 | -0.444% | 5.778% | -3.556% | -0.444% | 2.667% | 5.778% |
0.13 | 6.57 | 0.444% | 6.722% | -2.694% | 0.444% | 3.583% | 6.722% |
0.14 | 6.62 | 1.333% | 7.667% | -1.833% | 1.333% | 4.500% | 7.667% |
0.15 | 6.67 | 2.222% | 8.611% | -0.972% | 2.222% | 5.417% | 8.611% |
0.16 | 6.72 | 3.111% | 9.556% | -0.111% | 3.111% | 6.333% | 9.556% |
0.17 | 6.77 | 4.000% | 10.500% | 0.750% | 4.000% | 7.25% | 10.500% |
0.18 | 6.82 | 4.889% | 11.444% | 1.611% | 4.889% | 8.167% | 11.444% |
0.19 | 6.87 | 5.778% | 12.389% | 2.472% | 5.778% | 9.083% | 12.389% |
0.20 | 6.92 | 6.667% | 13.333% | 3.333% | 6.667% | 10.000% | 13.333% |
0.21 | 6.98 | 7.556% | 14.278% | 4.194% | 7.556% | 10.917% | 14.278% |
0.22 | 7.03 | 8.444% | 15.222% | 5.056% | 8.444% | 11.833% | 15.222% |
0.23 | 7.09 | 9.333% | 16.167% | 5.917% | 9.333% | 12.750% | 16.167% |
0.24 | 7.14 | 10.222% | 17.111% | 6.778% | 10.222% | 13.667% | 17.111% |
0.25 | 7.20 | 11.111% | 18.056% | 7.639% | 11.111% | 14.583% | 18.056% |
Links
Books:- Wong on Dice, by Stanford Wong.
- Golden Touch Dice Control Revolution!, by Frank Scoblete.
- Get the Edge at Craps, by Sharpshooter.
- Golden Touch Craps
Internal Links
- How the house edge for each bet is derived, in brief.
- The house edge of all the major bets on both a per-bet made and per-roll basis
- Dice Control Experiments. The results of two experiments on skillful dice throwing.
- Dice Control Advantage. The player advantage, assuming he can influence the dice.
- Craps variants. Alternative rules and bets such as the Fire Bet, Crapless Craps, and Card Craps.
- California craps. How craps is played in California using playing cards.
- Play Craps. Craps game using cards at the Viejas casino in San Diego.
- Number of Rolls Table. Probability of a shooter lasting 1 to 200 rolls before a seven-out.
- Ask the Wizard. See craps questions I've answered about:
- Simple Craps game. My simple Java craps game.
External Links
- Las Vegas craps survey — The max odds bet allowed at each casino.